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BUCKLING ANALYSIS OF CRACKED, FLOATING ICE SHEETS 

M.D. Adley and D.S. Sodhi 

INTRODUCTION 

Background 

The design load for offshore structures in northern waters is often the 

horizontal thrust exerted by a floating ice sheet.  The maximum ice force 

that may be developed is determined by either the environmental driving 

forces or the force required for the ice sheet to fail.  The smsiller of these 

two forces will govern.  Since it is very difficult to accurately estimate 

the magnitude of environmental driving forces such as winds, currents and 

thermal strains, and since these forces may generally be greater than the 

failure load of the ice sheet, the force required for the ice sheet to fail 

is used as an upper limit of the ice forces. 

The failure load of the ice sheet is a function of many variables:  the 

strength of the ice sheet, the thickness of the ice sheet, and the type of 

structure-ice interaction are some of the important factors. These factors 

will determine the failure mode of the ice sheet. The three most common 

modes of failure for the ice sheet are bending, crushing and buckling.  The 

bending mode of failure is generally induced by a fixed, rigid structure with 

sloping sides.  The crushing and buckling modes of failtire are generally in- 

duced by a fixed, rigid, vertical structure, although crushing may also be 

caused by a fixed, flexible, vertical structure.  The buckling mode of fail- 

ure is most likely to occur when the aspect ratio (structure width/ice thick- 

ness) is large, such as when a thin ice sheet impinges on a wide, vertical 

structure.  Conversely the crushing mode of failure is likely to occur when 

the aspect ratio is small. 

When a floating ice sheet is loaded with an in-plane load, cracks may 

develop from the point of loading and radiate outwards through the ice sheet. 

As a result of those cracks the domain and the boundary conditions for the 

differential equation governing the buckling problem are altered.  Figure 1 
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Ice Stieet 

a.     Symmetrical  configuration of 
cracks ( OF B) . 
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Figure 1. Plan view of a floating, cracked Ice sheet and a structure as they 
push each other to produce buckling of an ice sheet. 

shows the plan view of a floating Ice sheet that is pushed against a struc- 

ture, resulting in cracks at angles a and 3 from the edge of a structure. 

The orientation of cracks will be divided into two groups, those that are 

symmetrical about the line of loading and those that are not symmetrical 

about the line of loading.  Figures la and b, respectively, show examples of 

a symmetrical and an unsymmetrlcal configuration of cracks relative to the 

structure. 

After the vertical cracks appear, the largest force the ice sheet can 

exert on the structure is the failure load of the ice sheet still in contact 

with the structure.  If the aspect ratio is large enough to cause buckling, 

the largest force the ice sheet can exert on the structure is the buckling 

load of the cracked, floating ice sheets.  The purpose of this study is to 

determine the buckling load of cracked, floating ice sheets as opposed to 

crushing failure of ice sheets.  The results of theoretical analyses are com- 

pared to those determined experimentally.  The effect of the ice sheet geome- 

try on the buckling load is determined both theoretically and experimentally. 

This will be useful in determining the buckling load when a cracked ice sheet 

Interacts with a wide structure. 

The theoretical part of the analysis consists of modeling the floating 

ice sheet as a thin, homogeneous, Isotropic, semi-infinite plate resting on 

an elastic foundation.  The force exerted by the elastic foundation is as- 
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Figure 2. Geometrical shapes of the ice sheets that were used in both theo- 
retical and experimental studies. 

sumed to be linearly proportional to the deflection of the ice sheet, and the 

reactive forces at adjacent points in the foundation are assumed to be un- 

coupled, i.e. a Winkler-type foundation is used.  The assumption of a linear 

foundation is valid as long as the ice sheet does not submerge completely un- 

der the water surface or emerge completely out of the water.  Thus, this as- 

sumption is valid for the linear stability analysis to determine the bifurca- 

tion load. As a result of those assumptions a differential equation can be 

derived that describes the buckling behavior of a floating ice sheet.  This 

partial differential equation is solved by the finite element method.  The 

solution of that equation yields the buckling load and mode of buckling of 

the floating ice sheet. 

The experimental program consisted of pushing ice sheets of different 

configurations against a structure and measuring the buckling load. The geo- 

metrical shapes considered in this study for both the experimental and the 

theoretical work are shown in Figure 2.  These shapes were chosen to cover a 

wide range of angles; the results for the intermediate shapes may be deter- 

mined by interpolation. 
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Figure 2 (cont'd). 

Literature review 

The buckling analysis of infinite beams on elastic foundations was pre- 

sented by Hetenyi (1946).  Aside from this early work the buckling analysis 

of floating ice sheets was virtually ignored until the past few years. 

Sodhi and Hamza (1977) presented a stability analysis of a semi-infinite 

floating ice sheet, which was performed by the finite element method. Kerr 

(1978) presented a buckling analysis of a tapered beam of ice. Takagi (1978) 



solved the buckling problem of an infinite floating ice sheet uniformly 

stressed along the periphery of an internal hole. Wang (1978) presented a 

buckling anaylsis of a semi-infinite ice sheet moving against a vertical, 

rigid, cylindrical structure; the finite difference method was used for that 

analysis. 

Nevel (197 9) obtained a closed form solution to the differential equa- 

tion that governs the buckling behavior of a tapered beam of Ice floating on 

water. This analysis, as well as the analysis presented by Kerr (1978), was 

based on beam theory.  Sodhi (1979) presented a buckling analysis of a semi- 

infinite wedge-shaped ice sheet, based on plate theory. 

The analysis was performed by the finite element method.  In that report Sod- 

hi quantified the relationship between the buckling load of a wedge-shaped 

ice sheet and the parameters that it is dependent on, i.e. boundary condi- 

tions, aspect ratio and included angle. 

In 1980 a review of buckling analyses was presented by Sodhi and Nevel. 

This report compared the results of several of the reports previously men- 

tioned. 

All of these reports were based on elastic linear stability theory. 

Therefore, the buckling loads computed by these analyses are the loads at 

which bifurcation of equilibrium occurs, not the failure loads of the ice 

sheets.  Kerr (1981a) presented a buckling analysis based on large deforma- 

tion theory (i.e. the assumption of small deformations used in linear stabil- 

ity analyses was not made). 

Sodhi et al. (1982a) conducted an experimental study of the buckling 

loads required for ice sheets to fail. The ice sheets were pushed against 

structiires of different widths, and the force required for the ice sheets to 

fail in the buckling mode was measured.  Sodhi (1983) also presented a dynam- 

ic buckling analysis of a floating ice sheet. 

There has also been some work done in fields other than ice engineering 

that addresses the problem of a thin plate on an elastic foundation. Vlasov 

and Leont'en (1966) discussed buckling analyses of beams, plates and shells 

resting on elastic foundations.  The solutions presented in that paper consi- 

dered only the simply supported boundary conditions.  The results of a few 

nvraierical analyses are presented in the Handbook of Structure Stability (Col- 

umn Research Committee of Japan 1971). 



STATEMENT OF THE PROBLEM 

The governing differential equation for the buckling behavior of a thin 

plate on an elastic foundation can be written as follows (Timoshenko and Gere 

1961): j 

DV'*w + Kw = Nxx-^+ 2Nxy-^+Nyy4-f (1) 
ox      ■' 3x 9y   " 3y 

where     w = out-of-plane deflection of the plate (ice sheet) 

X, y = Cartesian coordinates on the mid-plane of the plate (ice 
sheet) „ ! 

V = biharmonic operator 

Nxx» Nxy, Nyy = in-plane stress resultants (force per unit length) which are 
linearly dependent on the total in-plane external force P. 

K = modulus of the foundation (specific weight of water in the 
case of a floating ice sheet) 

D = E h^/lZd-v"^), flexural rigidity of the plate (ice sheet) 

E = "effective" elastic modulus of the ice sheet 

h = ice thickness 

V » Poisson's ratio for ice. 

Equation 1 is solved by first solving a plane stress problan to deter- 

mine the in-plane stress resultants N^x» Nxy and Nyy, and then solving the 

eigenvalue problem to determine the buckling loads and modes of buckling. 

The nondimensional form of the buckling load is found by normalizing the co- 

ordinates X and y with respect to the characteristic length of the plate L 

L - l—^f" (2) 
12(l-v^)K 

to obtain jc ■ x/L and ^ = y/L.  The governing equation can now be rewritten 
in the following form: 

Vw + w = :^[N^^+2Nx^ —+N^^) (3) 

where    P " total in-plane buckling load 

B " width over which P is distributed at the boundary of the domain 

Nxx>Nxy»Nyy "  nondimensional expressions (NXXB/P, NxyB/P, NyyB/P). 

Solutions of eq 3 that satisfy homogeneous boundary conditions yield the 

eigenvalue P/BKL (nondimensional buckling load) and the corresponding eigen- 

mode (i.e. mode of buckling). 



FINITE  ELEMENT ANALYSIS 

The  stability analysis  of a  plate on 

an elastic  foundation breaks down  into 

twD  separate analyses,  an in-plane analy- 

sis and an out-of-plane analysis.     The 

in-plane  analysis determines  the  stress 

distribution within the plate,  which is 

described by the  in-plane  stress result- 

ants obtained  in the analysis.     The for- 

mulation of  the out-of-plane  problem cul- 

minates in an eigenvalue  problem.     The 

solution of this  problon for the lowest 

eigenvalue will  yield the lowest  buckling 

load  and a vector of displacement repre 

senting  the buckling mode. 

P,(xi.yi) 

Figure 3.  The in-plane and out- 
of-plane finite element and its 
coordinate system. 

In-plane analysis .        . 

The element used in the in-plane analysis is an arbitrary triangular 

element.  The triangular shape was chosen for its effectiveness in modeling 

the wedge-shaped ice sheets that will be analyzed.  The element and its coor- 

dinate system are shown in Figure 3.  The x,y and E,,T\  coordinate systems rep- 

resent the global and local coordinate systems, respectively.  The dimensions 

a, b and c shown in Figure 3 are given by 

a= [(x2-X3)(x2-xi) + (y2-ys) (Y2-y l) j/r _ _, , 

b= [[x3-xi)(x2-xi) + [y3-yij(y2-yi)]/r     __ (4) 

•• ' c= [[x2:-xi)[y3-yi) - (X3-X1] (y2-y i) ]/r     /<■'■'■-' 

where 

2il/2 
r = [[x2-xi) + (y2-yi} ] 

The x,y coordinates of the vertices are numbered as shown in Figure 3. 

The strain energy expression Ug used in developing the plane stress ele- 

ment may be written as follows (Cowper et al. 1970): 

Ue = 
Eh ff   rr8u^2   , r 8v A2,   „      9u   3v   ,   1   ,,     N   r ^u ,    9v -,21, _, ,^. U  UT?J   +l^J + 2V^^+- (1-V)   [-^+-^]   Jd5dn (5) 

2(i-v^) ^^ ^^95^ ■ ^9n^ ■ "" 35 3n ■ 2 "" " ^3n ' 35- 

where u is the displacement in the 5 direction, and v is the displacement in 

the n direction. 



The displacement functions used to represent the u and v displacements 

within an element are 

2 2 3 2 2 3 u " ai + 32? + asn + a^£.   + as^ri + aen   + ayS   + asC n + agSn   + aion 

2 2 3 2 2 v=»aii + ai25+ai3n+aii+5   +ai55n+ai6n   + anK   +aie5n+ aigSn        (6) 
3 

+ a2on • 

The finite element derived using these displacement functions Is a 20- 

degree-of-freedom element. There are six degrees of freedom at each of the 

three vertices of the element. These are u, -r^, -r-, v, -^  and -r- . There 

are also two degrees of freedom (u and v) at the centrold of the element, 

which are eliminated by a static condensation procedure. 

The displacement functions used In developing this element will lead to 

strain energy convergence rates proportional to n~ , where n Is the number of 

elements per side of a structure. 

By utilizing these shape functions and the strain energy expression pre- 

sented above, the elements of the stiffness matrix can be represented by 

closed form expressions.  For a complete derivation of the element, see Cow- 

per et al. (1970). 

Out-of-plane analysis 

The element used in the out-of-plane analysis is also an arbitrary tri- 

angular element.  The coordinate system for the out-of-plane element is iden- 

tical to that used for the in-plane element (Fig. 3). 

The strain energy expression for the stability analysis may be written 

as follows (Gallagher 1975) : 

Ue--D//l(-^)2+ (-^f +2vi4-^+2(l-v) (iJi-)^ j^y^ + i jKw^d&in 

(7) 

+ I //[055 t (H)' + o,, t i^]' -H la^^t  (-||)[^)]dCdn 

where w is the out-of-plane deflection and a  refers to the stresses resulting 

from the applied axial load (tensile stress is defined as positive). 

The displacement function used to represent the out-of-plane deflection 

within an element is 

2 2 3 2 2 w(C,n) = ai + a25+ a3n+ ai+C   + asCn +3 6^1   + ayK   + asK r\ + agCn 
+ aion^ + aiie** + ai2C^Ti + aiaC^n^ + am^n^ + aisn"* + aieS^        (8) 

+ anK^r\^ + aie^^n^ + aigCn"* + a2oTi^« 

8 



By substituting eq 8  into eq 7, we may derive  the stiffness and geometric 

matrices  for the element. 

The finite element derived using the displacement function presented  in 

eq 8 is an 18-degree-of-freedom element.     There are six degrees  of  freedom at 

each vertex of the triangle.     These are the transverse deflection and its 

first and second derivatives,   i.e. 

3w3w3w3w       9w 
W         —     7          7  • 

3^    3n    35     9C3n    8n 

The displacement  function used  in developing this element is a quintic  poly- 

nomial in X and y.     Therefore,   the deflection along any edge of  the element 

varies as a quintic  polynomial  in the edgewise coordinate. 

The general quintic polynomial  in two variables depends  on 21  constants. 

Since there are only 18 degrees of freedom,   3 additional constraints may be 

satisfied:   the  slope normal  to each edge must be a cubic  function of  the 

edgewise coordinate.     The  four coefficients  of the  cubic  polynomial are 

uniquely determined by  the  slope normal  to the edge  and,  by  the  twist,   at 

each of  the  two  terminal vertices.     Therefore,  the continuity of displace- 

ments and normal  slopes are maintained across interelement boundaries. 

The  accuracy of the out-of-plane element is comparable  to the accuracy 

of  the  in-plane element.     This is very desirable because  the accuracy of  the 

resxilts of the in-plane analysis will affect the accuracy of the out-of-plane 

analysis.     For a complete derivation of  the element,   see Cowper  et al. 

(1969). 

The finite element  formulation of  the linear  stability analysis of  a 

plate on an elastic  foundation may be derived  by utilizing the theory of sta- 

tionary potential  energy.     By employing  the principle of  stationary potential 

energy and  following a well-established procedure     (Gallagher  1975),  the  fol- 

lowing equation may be derived: 

[K]{Af} =   X[KG] {Af} (9) 

where 

[K] = stiffness matrix 

[KG] = geometric stiffness matrix 

{Af} = vector of displacements (the eigenvector) j 

X    = multiplication factor (the eigenvalue) . 



Equation 9, which is formulated in the out-of-plane analysis, is in the 

form of an eigenvalue problem.  The solution of eq 9 yields the buckling load 

X and the buckling mode JAf}. 

Two finite element computer programs have been written for this project. 

The first program (POEFl) was written to solve the in-plane stress problem. 

POEFl utilizes the in-plane stress element previously discussed.  The second 

program (P0EF2) was written to formulate the out-of-plane problem.  P0EF2 

utilizes the out-of-plane element previously discussed.  A third program was 

an in-plane stress program that utilized a triangular element with a linear 

displacement function.  This program was taken from Desai and Abel (1972). 

The finite elements used in POEFl and P0EF2 were chosen for their proven 

high accuracy and good error-convergence rates. Since the out-of-plane anal- 

ysis is affected by any errors in the in-plane analysis, it is also desirable 

that the elements used both have the same strain-energy convergence rates. 

The finite element programs used for this project were thoroughly test- 

ed.  Each of the three programs was used to analyze problems for which an an- 

alytical solution was available.  The results were very good.  The solutions 

given by the computer programs agreed with the analytical solutions, and the 

convergence properties appeared to be very good. 

Reduction of the eigenvalue problem 

The out-of-plane analysis culminates in an eigenvalue problem in the 

form of eq 9, which is solved by two methods.  The first method involves 

solving the full-sized eigenvalue problem.  This requires a very effective 

solution algorithm and also places restrictions on the size of the problems. 

Therefore, only selected problems are solved by the first method. 

The second method includes an algorithm to reduce the size of the eigen- 

value problem.  In this method, known as the Guyan reduction method (Guyan 

1965) , some degrees of freedom are designated as masters and some as slaves. 

The degrees of freedom retained in the reduced eigenvalue problem are defined 

as the masters.  The Guyan reduction method utilizes the static relationship 

between the masters and the slaves to remove the slave degrees of freedom 

while preserving the total strain energy of the structure.  The problem of 

selecting the masters is overcome by employing a recently developed algorithm 

that allows an analytical selection of the masters. The second method signi- 

ficantly reduces the size of the eigenvalue problem while preserving the ac- 

curacy of the eigenvalues of interest. 

10 



The following is a presentation of the algorithm used for the analytical 

selection of the masters.  This algorithm, along with a more thorough expla- 

nation of its use, can be found in Shah and Raymund (1982). The eigenvalue 

problem to be solved is in the form of eq 9. 

Step 1.  Select a cut-off value of X, to be known as X^,. 

Step 2.  Find the degree of freedom for which the ratio of ^±±/^Gi^ =   X 

is the largest.  If several degrees of freedom have the same value of the 

ratio, choose the one with the lowest index. 

Step 3.  If this value is greater than X^, condense this degree of free- 

dom from the stiffness and geometric stiffness matrices by the Guyan reduc- 

tion procedure. 

Step 4.  Apply steps 2 and 3 to the reduced matrices obtained.    .-t< 

Step 5.  If the greatest value of the ratio ^±±/^G±±  is _< X^, stop the 

procedure at this point and use the reduced matrices obtained to calculate 

the eigenvalues and eigenvectors of interest. 

This algorithm has been used in dynamic natural frequency analyses and 

has met with a great deal of success (Shah and Raymund 1982). P0EF2 utilizes 

this algorithm to reduce the size of the eigenvalue problem. 

Development of the finite element model ' - 

The selection of the finite element model is a crucial step in an analy- 

sis because the results can be greatly affected by the characteristics of the 

model.  The finite element models used for this project were developed by us- 

ing several different models to analyze the same problem.  The error intro- 

duced by varying the level of discretization was determined by comparing the 

results from the different models. The models used in the analysis were 

chosen for their ability to accurately describe the behavior of the ice sheet 

in spite of the following considerations. 

1) A finite-sized model is used to represent the behavior of a semi- 

infinite ice sheet. Therefore, the model must be large enough so that the 

solution is not significantly affected by changes in boundary conditions at 

the edges, which are supposed to be at infinity. However, the model has to 

be small enough so that the solution will be computationally feasible. 

2) The discretization of the structure must be designed so that areas 

with large stress and displacement gradients are highly discretized. 

3) The in-plane stress programs calculate the in-plane stress resultants 

at the centroids of the finite elements.  Therefore, if the element is too 

11 



large, the values of the in-plane stress resultants will not be representa- 

tive of the stresses in the area covered by the element. 

It is obvious that the solution is affected by the size and number of 

elements in the model.  It is advantageous, then, to analyze the symmetrical- 

ly shaped ice sheets and the unsymmetrically shaped ice sheets separately. 

Finite element model for the symmetrical shapes 

Symmetrically shaped ice sheets, i.e. wedges, have been analyzed previ- 

ously by other researchers. However, the previous analyses used closed form 

expressions to describe the distribution of in-plane stresses.  In the analy- 

sis presented here, a separate in-plane finite element analysis is performed 

to ascertain the distribution of in-plane stresses within the element.  Be- 

cause of the generality of the finite element method, loading distributions 

can be chosen that more closely simulate conditions that might occur in na- 

ture or, as in this case, conditions existing during model studies. 

The finite element model used to analyze one of the symmetrical shapes 

is shown in Figure 4.  Figure 5 shows the boundary conditions and the load 

distribution used in the in-plane analysis.  The edge that is supposed to go 

to infinity is fixed in the x direction but is free to displace in the y dir- 

ection.  Since the wedge is symmetrical about its longitudinal axis, only 

half of the wedge is modeled.  Along the centerline the model is fixed in the 

Included Angle = 60° 

*-X 

Figure 4.  Finite element model used to analyze 
sjmimetrically shaped ice sheets. 

12 
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Figure 5.  Boundary conditions and 
load distribution used in the in- 
plane analysis of the symmetrical 
shapes.  The rollers represent zero 
normal displacement and zero tangen- 
tial force at the boundary.  The 
uniformly distributed in-plane load 
intensity P/B is applied at the ice/ 
structure interface. 

Line of Symmetry 

Figure 6.  Boundary conditions used 
in the out-of-plane analysis of the 
symmetrical shapes.  The free bound- 
ary condition signifies zero bending 
moment and zero effective shear force 
at the boundary.  The fixed boundary 
condition signifies zero deflection 
and zero normal slope. 

y direction due to symmetry but is free to deform along the x axis. The 

boundary conditions on the loaded edge and the tapered edge are modeled as 

free. 

The loading distribution used in the analysis is uniform.  Since the re- 

sults of the theoretical analysis will be compared to the experimental re- 

sults from the model study, the loading was chosen to represent the loading 

that the ice sheets experienced during the tests. The true loading distribu- 

tion the ice sheets experienced is actually unknown, but the authors feel 

that the uniformly distributed load is a good assumption. 

There are three boundary conditions used in the out-of-plane analysis 
(Fig. 6): 

Free: moment (M) =0, shear(V) =0 

Fixed: displacement (w) = 0, slope (Dw/9x) = 0 

Hinged: displacement (w) = 0, moment (M) = 0 . 

The edge that is supposed to go to infinity is modeled as fixed.  Since the 

ice sheet is symmetrical about its longitudinal axis, only half of the ice 

sheet is analyzed. The boundary condition along the centerline is free. 

However, due to symmetry the slope normal to the centerline is set to zero. 

13 



The boundary condition along the tapered edge is modeled as free.  The bound- 

ary along the loaded edge is modeled as a hinged boundary. 

Finite element model for the unsymmetrical shapes 

A finite element model used to analyze one of the unsymmetrical shapes 

is shown in Figure 7.  The boundary conditions and load distribution used in 

the in-plane analysis of an unsymmetrical ice sheet are shown in Figure 8. 

The edge that is supposed to go to infinity is modeled as fixed in the x 

direction, but it is free to displace in the y direction.  The loaded edge is 

modeled as free to move in both the x and y directions.  The in-plane dis- 

placements in the direction perpendicular to the cracks were assumed to be 

zero, as the ice across the crack can prevent the displacement in the normal 

but not in the tangential direction. 

The shape of the unsymmetrical ice sheet and the loading configuration 

are such that the ice sheet will experience a moment as well as a compressive 

load (Fig. 9). The in-plane boundary condition at the cracks is to allow 

displacement in the tangential direction (slip) and no displacement in the 

normal direction due to the presence of adjoining ice.  The magnitude of the 

moment experienced by the ice sheet depends on the shape of the distributed 

loading applied.  The authors chose to model this loading as a trapezoidal 

load.  There are now two unknowns that pertain to the loading distribution: 

the magnitude of the uniform portion of the trapezoidal load and the slope of 

the top side of the trapezoid (Fig. 8).  These two variables (b and 6) cannot 

be solved for without additional information. 

3.5 m 

a = -l5" 

/3 = I5° 

Figure 7.  One of the finite element models used to analyze 
the unsymmetrical shapes. 
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Loading I 

Loading 3 

Figure 8.  Boundary conditions and in-plane 
loading distributions used in the in-plane 
analysis of the unsymmetrical shapes. 

Resultant of 
Assumed Load 
Distribution 

Figure 9. Moment induced by the unsymmetrical 
shape and the partially confined in-plane bound- 
ary conditions used as a consequence of that 
momen t. 

Two methods of dealing with this problem were investigated. In one case 

the additional information needed to solve for b and 0 was taken from the ex- 

perimental force records. In the second method the loading distributions 

that gave the largest and smallest buckling pressures were used. This method 

yielded two curves, one representing the largest force that the ice sheet 

would exert on the structure and the other the minimum force required for the 

ice sheet to fail.  Results were computed for both of these methods. How- 
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Hinged     Figure 10.  Boundary conditions used 
for the out-of-plane analysis of the 

 ,^x    unsymmetrical shapes. 

ever, the authors favor the second method since more useful information can 

be presented without introducing further sources of error. 

An example of the boundary conditions used in the out-of-plane analysis 

for the unsymmetrical shapes is shown in Figure 10.  The boundary conditions 

used for the out-of-plane analysis are the following:  hinged at the loaded 

edge, fixed at the edge that is supposed to go to infinity, and free on the 

remaining two edges. 

EXPERIMENTAL PROCEDURE 

The model study presented in this report was performed in the refriger- 

ated test basin at CRREL (Sodhi and Adley 1984).  The ice sheets tested were 

grown by seeding and freezing a solution of 1% urea in water at an ambient 

temperature of -12°C.  Prior to the tests the refrigerated room was warmed up 

and the temperature of the ice was allowed to stabilize at 0°C.  The ice 

tested can be characterized as columnar ice with horizontal c-axes. 

The model study consisted of monitoring the horizontal forces while 

either pushing a structure against a stationary ice sheet or pushing an ice 

sheet against a stationary structure.  The relative velocity between the 

structure and the ice sheet was held constant at 1 cm/s.  In both cases the 

length of the structure/ice interface was 1.85 m.  The experimental set-up is 

shown in Figure 11. 

' -Prior to the tests the thickness, flexural strength and characteristic 

length of the ice sheet were measured.  The characteristic length was deter- 

mined so that the experimental restilts could be compared to the theoretical 

results.  The procedure involves placing dead weights in discrete increments 

on the ice sheet and monitoring its deflection.  This procedure is described 

by Sodhi et al. (1982a).     '      ' 
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Instrumented Pin 
for Measuring 
Reaction Force 

Boom 

a.     Side view. 

Carriage 

Instrumented 
Support Bar 

Boom 

b.  Schematic view. 

Figure 11.  Experimental set-up used in the model study. 

The edge of the ice sheet was sawed parallel to the structure prior to 

testing to ensure uniform, continuous contact. The geometric shape of the 

ice sheet was modified by cutting two slots with a saw. An example of these 

slots is shown in Figure 12 (the slots are marked by the 

black-and-white-striped poles). The far edge of the ice sheet was left 

intact. A 3-mm-thick rubber pad was attached to the structure where the 

structure/ice interface would occur during the tests. The pad prevented the 

edge of the ice sheet from moving up or down but left it free to rotate, 

creating a hinged boundary condition. This condition was chosen because it 

could be simulated in the experiments quite accurately. 

The only difference between tests was the orientation of the two slots, 

which were cut to modify the shape of the ice sheet.  Thus, the only 

parameter varied was the geometric shape. The buckling load was assumed to 
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a.      Symmetrical  ice  sheet  prior  to  testing. 

b.      Symmetrical  ice  sheet  during  testing. 

Figure 12.     Ice  sheet  buckling  tests. 

18 



t^^..-.-^'^ --.^-. 

c.  Unsymmetrical ice sheet during testing. 

d.  Unsymmetrical ice sheet after testing. 

Figure 12 (cont'd). 
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Force Record ot 
- Support 2(F2) >V 

Force Record at ^ / I 
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12 

Figure 13. Typical ice forces measured at 
the two supports in the model study. 

be the largest (peak) force exerted on the structure by the ice sheet as de- 

termined from the experimental force records (Fig. 13). 

RESULTS 

The nondimenslonal buckling load (P/BKL ) is a function of the boundary 

conditions, the included angle, and the aspect ratio.  For the theoretical 

analysis the boundary conditions and the aspect ratio were held constant. 

Thus, the results presented will show the effect that the geometry of the ice 

sheet has on the nondimenslonal buckling load. The boundary conditions used 

in the theoretical analysis were chosen to simulate the boundary conditions 

used in the model study, so the results of the theoretical analysis can be 

compared to the experimental results. 

Symmetrical shapes 

The results of the analyses of the symmetrically shaped ice sheets are 

presented in Figure 14. The experimental results are also presented in Table 

1, along with data on ice sheet and test conditions. In approximately 90% of 

the tests the aspect ratio of the ice sheet is very close to that used in the 

theoretical analysis (4.3). Thus, there is a strong basis for comparison be- 

tween most of the points and the curves developed in the theoretical analy- 

sis. 

The three curves presented in Figure 14 represent separate theoretical 

analyses but use the same aspect ratio and boundary conditions.  Two of the 

curves, representing the results of two finite element stability analyses, 

were computed for this project. For the first analysis (represented by curve 

1) a triangular-shaped element utilizing a cubic displacement function was 
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Table 1. Results of the experiment on symmetrically shaped i ce shee 

Included 
Test Angle h L B P P 
no. (degrees) (cm) (m) (m) (N) B/L T BKL 

14 180 3.4 0.46 1.85 10,353.0 4.02 2.697 
15 0 3.4 0.46 1.85 9,468.0 4.02 2.466 
16 60 3.4 0.46 1.85 8,891.0 4.02 2.316 
17 90 3.4 0.39 1.85 8,476.0 4.74 3.072 18 120 3.4 0.39 1.85 9,267.0 4.74 3.358 19 30 3.4 0.39 1.85 6,086.0 4.74 2.206 20 0 3.4 0.35 1.85 4,610.0 5.29 2.074 21 180 3.4 0.35 1.85 8,806.0 5.29 3.962 

25 0 2.8 0.475 1.85 11,349.0 3.89 2.773 26 180 2.8 0.475 1.85 12,430.0 3.89 3.037 27 60 2.8 0.45 1.85 7,707.0 4.11 2.098 28 90 2.8 0.435 1.85 9,000.0 4.25 2.622 29 120 2.8 0.43 1.85 9,998.0 4.30 2.981 
30 150 2.8 0.43 1.85 8,443.0 4.30 2.517 31 30 2.8 0.43 1.85 9,522.0 4.30 2,839 32 0 2.8 0.43 1.85 5,405.0 4.30 1.629 

n 1 r 
Curve I  1 „ 
Curve 2 J  Present Study 

40" 80° 120° 

Included Angle (a + /9) 
160° 

Figure 14.  Results of the theoretical 
(lines) and experimental (points) work 
on symmetrical shapes.  The assun^jtions 
for these analyses are described in the 
text. 
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Figure 15.  Plot of nondimensional buckling 
pressure (P/BKL ) vs included angle ori-g for 
different boundary conditions at the ice/ 
structure interface and for different aspect 
ratios (B/L). 

employed for the in-plane stress analysis.  This analysis used the computer 

programs written for this project (POEFl and P0EF2).  In the second analysis 

(represented by curve 2) a triangular-shaped element utilizing a linear dis- 

placement function was used for the in-plane stress analysis.  This analysis 

used a plane stress finite element program taken from Desai and Abel (197 2) 

and the out-of-plane program written for this project (P0EF2).  Both of these 

analyses used a computer program presented by Gladwell and Tahbildar (1972) 

that solves the algebraic eigenvalue problem. 

The third curve (represented by curve 3) was computed by Sodhi (197 9). 

Sodhi used a Fourier decomposition and the finite element method to solve the 

buckling problem of the symmetrical shapes.  Sodhi's analysis assumes a radi- 

al stress field for the in-plane stress distribution. 

For a symmetrical configuration of cracks the results of the buckling 

analysis of the wedge-shaped ice sheet (Sodhi 1979) have been plotted in Fig- 

ure 15, which shows the normalized buckling loads (P/BKL ) with respect to 

the wedge angle (ort-g) for different aspect ratios and boundary conditions at 

the ice/structure interface. 

Unsymmetrical shapes 

The results of the analyses of the unsymmetrically shaped ice sheets are 

presented in Figure 16.  The test results are presented in Table 2. 
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Table 2.  Results of the experiment on unsymmetrically shaped ice sheets. 

Included 
angles 

Test (deg: rees) h 
(cm) 

L 
(m) 

B 
(m) 

P 
(N) 

B 
L 

P 

no. a e BKL^ 

33 0 0 3.03 0.35 1.85 4,279.0 5.29 1.925 
34 0 90 3.03 0.35 1.85 5,034.0 5.29 2.265 
35 0 30 3.03 0.35 1.85 4,168.0 5.29 1.875 
36 0 60 3.03 0.35 1.85 4,579.0 5.29 2.060 
37 0 45 3.03 0.30 1.85 4,742.0 6.17 2.904 
38 -30 60 3.03 0.30 1.85 4,775.0 6.17 2.925 

55 -15 15 3.10 0.39 1.85 8,592.0 4.74 3.114 
56 -15 30 3.10 0.39 1.85 7,911.0 4.74 2.867 
57 -15 60 3.10 0.39 1.85 6,305.0 4.74 2.285 
58 -15 90 3.10 0.37 1.85 6,262.0 5.00 2.521 
59 -30 30 3.10 0.35 1.85 3,614.0 5.29 1.626 
60 -30 60 3.10 0.35 1.85 3,658.0 5.29 1.646 
61 -30 90 3.10 0.35 1.85 3,405.0 5.29 1.532 

69     0     0     2.87     0.32    1.85  5,097.0  5.78  2.744 

71     0    60     2.87     0.32    1.85  6,671.0  5.78  3.591 
72 0    90 2.87 0.32    1.85  4.245.0  5.78  2.285 

The curves presented in Figures 16a and b are the results of the theo- 

retical analyses.  The same aspect ratio and boundary conditions were used 

for each analysis, and the aspect ratio was the same as that used for the 

symmetrical analyses. 

The curves were computed using an in-plane finite element program pre- 

sented by Desai and Abel (1972) and the out-of-plane program written for this 

project (P0EF2).  The program presented by Desai and Abel (1972) utilizes a 

triangular-shaped element derived by using a linear displacement function. 

The eigenvalue problem was solved by using the computer program presented by 

Gladwell and Tahbildar (1972). 

The three curves presented in Figure 16 were computed using different 

loading distributions.  Curves 1 and 2 represent, respectively, the largest 

load the ice sheet can withstand prior to buckling and the minimum load re- 

quired to buckle the ice sheet.  Curve 3 is computed by applying the loading 

distributions obtained from experimental force records. ! 

There are no results available for the unsymmetrical shapes when a = 

-30° due to numerical difficulties in obtaining a solution.  The cause for 

these difficulties is not known. 
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Figure 16.  Results of the theoretical (lines) and 
experimental (points) work on unsymmetrical shapes. 
The theoretical results were obtained by finite ele- 
ment analysis using different assumptions for the 
distribution of in-plane load. 
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Mode shapes 

Sinct. the load was applied slowly to the ice sheets tested in the model 

study (1 cm/s), all of the ice sheets buckled in the first mode.  The shape 

of the first mode of buckling predicted by the theoretical analysis appears 

to agree well with the mode shapes observed in the experimental work. 

DISCUSSION AND CONCLUSIONS 

The theoretical analyses presented in this report were done for one val- 

ue of the aspect ratio (structure width/characteristic length).  However, the 

close agreement between the results computed for this project and the results 

computed by Sodhi (197 9) and between the theoretical and experimental results 

of this project indicate that the analysis developed could be used success- 

fully for ice sheets with different aspect ratios.  The comparison between 

the results presented in this paper and Sodhi's (1979) results also indicates 

that the assumption of the radial stress field for the distribution of the 

in-plane stresses is valid for the symmetrical shapes. 

The authors believe, after comparing the results of the analyses of the 

symmetrical shapes, that the use of the higher-order plane stress finite ele- 

ment was not warranted.  The results of the stability analyses were not ad- 

versely affected by using the less-accurate plane stress computer program 

taken from Desai and Abel (1972), so it was used for the analyses of the un- 

symmetrical shapes because it is less expensive to run. 

The results of the theoretical and experimental analyses show that the 

nondimensional buckling load for a symmetrical configuration increases as the 

included angle increases.  Thus, the configuration with the largest buckling 

load is the S3niimetrical shape with an included angle of 180° . 

The in-plane analysis of the unsymmetrical shapes became quite complex 

because of 1) the moment induced by the unsymmetrical geometry, 2) the abili- 

ty of the cracks to transmit compressive normal forces created by that mo- 

ment, and 3) the fact that the loading distribution, and therefore the magni- 

tude of the applied normal force and moment, is an unknown.  Because of that 

moment, the in-plane analysis was done by modeling the unsymmetrical shapes 

as partially confined; i.e. no displacements were allowed perpendicular to 

one longitudinal edge. 

Since the actual loading distribution experienced by the ice sheet is an 

unknown, the analysis used two assumed loading distributions and one loading 
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distribution determined from the experimental force records.  The two assiimed 

loading distributions were chosen to give the maximum and minimum buckling 

loads.  The loading distribution determined from the force record approxi- 

mates the actual loading distribution. However, since the force records were 

used to determine that load distribution, it is subject to experimental 

error. 

The discrepancy between the theoretical and experimental results, as 

well as the scatter in the experimental results, may be due to the following 

considerations: 

1) The nondimenslonal buckling pressure is a function of the aspect 

ratio (structure width/characteristic length).  Thus, the scatter in the ex- 

perimental data can be partially attributed to the fact that the aspect rati- 

os were not the same for each test. The discrepancy between the theoretical 

and experimental results can be partially explained by the fact that the 

aspect ratio used in the theoretical analysis was rarely equal to the aspect 

ratios measured during the experimental tests.  Since a 10% error in the 

characteristic length (the structure width was a constant) results in a 20% 

error In the nondimenslonal buckling pressure, the differing values used for 

the characteristic lengths can be a significant source of error. 

2) In the theoretical analysis the ice sheet is assumed to be a perfect 

structure; i.e. there are no Imperfections such as initial curvatures, eccen- 

tricity of loads, etc., in the ice sheet.  Thus, the buckling loads computed 

in the theoretical analysis are the loads at which bifurcation of equilibrium 

exists for "perfect" ice sheets.  Any imperfection in the sheet or eccentri- 

city in the loading can lead to lower buckling loads in the experiments. 

The authors believe that the scatter in the experimental data can large- 

ly be attributed to the variations in the ratio of structure width to charac- 

terlstlc length, as the buckling load (P/BKL ) is most sensitive to this par- 

ameter (Fig. 15). 
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